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In this paper, we determine the exact value of average n - K width dn ( W;;'(R),
L.(R)) of Sobolev-Wiener class W~.(R) in the metric L.(R) for 1 < q"; p < (f; and
get the value of dn( W~(R), Lqp(R» for the dual case, We also solve the optimal
interpolation problems of W~.(R) in the metric L.(R) and W~(R) in the metric
L.p ( R) for 1< q ,,; P < ex. L: 1993 Academic Press, Inc.

1. INTRODUCTION

Let X be a normed linear space, For subsets A and B of X we define

E(A, B, X)=: sup inf III - gllx.
fEA gEB

We denote by X(R) a normed linear space of functions defined on the
entire real axis R and assume that IE X(R) implies II" E X(R) for any
N>O, where/l".(x)=/(x) or °according to whether xEIN =: [-N, N]
or not. All functions II'N in X(R) compose a subspace of X(R) which we
denote by X(IN ).

For A c X(R), N> 0, and e> 0, we define

and

K(e, N, A) =: minI dim B: Be X(lN), E(S(A )N' B, X(lN» < e},
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where dim B denotes the dimension of the finite dimensional linear sub
space B of X(IN)' It is easy to see that K( E, N, A) is non-decreasing in N
and non-increasing in E.

Let (J be a positive real number. A linear subspace A of X(R) is said to
be of average dimension (J if

-d' -' l' l' K(E, N, A)1m A -. 1m 1m 2
e-.ON_Cf.;· N

For a subset 9Jl of X(R), the quantity

(J < 00. (1.1 )

d,,(9Jl, X(R» =: inf{ E(9Jl, A, X(R»: dim A ~ (J, A c X(R)} (1.2)

is called the Kolmogorov average (J-width (briefly average (J - K width) of
the set 9Jl in X(R). If there is a subspace A* of X(R) of average dimension
dim A *~ (J such that

d,,(9Jl, X(R)) = E(9Jl, A*, X(R), (1.3)

then A * is called optimal for d".(9Jl, X(R».
The concept of average width was first proposed by Tikhomirov [19, 20J

in order to consider problems of optimal approximation methods on a
non-compact Sobolev set W~(R). Sun Yongsheng [16J proposed problems
of optimal interpolation on W~(R). For p = q many results have been
obtained on W~(R) in the metric Lp(R) (see [3,8,12,13, 16J). It is easy to
verify that dn(W~(R),Lq(R)) = (jJ for p>q, nEZ+ = {I, 2, ... }. For
q = 1~ P~ 00, or 1~ q ~ p = 00, Liu Yongping and Sun Yongsheng
[9-11 J considered the average n - K width of the set W~q(R) in Lq(R),
where W~q(R) (I ~ p, q ~ 00) is defined as follows:

For each rE Z+' set

L~q(R) =: {IELq(R): fIr - I) is abs. cont.

on every finite interval, f(r) E Lpq(R)}, (1.4)

W~q(R) =: {IE L~q(R): Ilf(r11l pq ~ I},

where Lpq(R) =: {I: IIfll pq < oo} and

l~q<OCi

q= 00,
(1.5 )

while 11·11 Lp(l) denotes the usual Lp-norm on the interval I, and
Z=: {O, ±I, ±2, ... }.
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In [5J, the following properties of Lpq(R) were shown:

(i) Lpq(R) is a Banach space with norm 11·ll pq for any 1~ p, q ~ 00.

(ii) If p~q, then Lpq(R)cLp(R)nLiR); if p~q, then Lpq(R)=:>
Lp(R) U Lq(R); if p = q, Lpq(R) = Lp(R).

W;q(R) is called the Sobolev-Wiener class. When p = q, W;/R) = W;(R)
is the usual Sobolev class. For convenience, we often write W;q' L pq , and
II· II p instead of W;q(R), Lpq(R), and "·ll pp , respectively.

In the following, we always assume

1 1
-+-= 1
p p' '

1 1
-+-= 1q q/ (1 ~ p, q ~ 00 ).

The main purpose of this paper is to determine the exact value of
average n - K width ,U W;q' L q) of Sobolev-Wiener class W;q in the
metric L q for 1 < q ~ p < 00. For the dual case we determine the value of
dn ( W;, L qp )' We also solve the optimal interpolation problem of W;q in
the metric L q, and W; in the metric L qp for 1 < q ~ p < 00.

Before stating our main results, we give two lemmas as follows:

LEMMA 1.1 (cf. [IJ). Let 1<q~p<oo. Then there are two I-periodic
functions tP(x) and l/J(x) such that

(1) cP(x)=gDAx-t)Il/J(tW'-lsgnlj!(t)dt,

l/J(t) =;. -q g Dr(x - t) 1,p(x)lq-l sgn ,p(x) dx
p. =: ).(r, p, q));

(2) rjJ(x) has only two simple zeros °and ~ in [0, 1), l/J(x) has
only two simple zeros IXr and ~ + IX" where

(3) tP(x+~)= -tP(x),l/J(x+~)= -l/J(x);

(4) IltPIILq[o,l] = ).(r, p, q), and IlrjJ(r)(. )IIL
p
[o.l] = 1;

(5) ;.(r, p, q) = Jc(r, q!, pi).

Here
'Xi

DAt) = 2(2n)-r I k rcos(2knt - ~nr)
k~ 1

is the I-periodic Bernoulli polynomial.

( 1.6)

(1.7)

(1.8 )
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Then tPn(x) and 'Pn(x) are two (2/n)-periodic functions which depend only
on r, n, p, and q. For nEZ+, let

Sn,r _1 = {s(t) E C 2: S(rl(t) = 0,

Vt E G(j + 2rx r), ~ (j + 1 + 2rxr)), Vi E Z}

be the subspace of polynomial splines of degree r - 1 with simple knots
{(j + 2rx r )/n }jEZ' Any polynomial spline s(x) of SI.r-1 is called a cardinal
spline function.

LEMMA 1.2 (cf. [15 J). If there are tlVO constants c > 0, f3 > 0 such that
If(x)1 ~ c(lxl fl + 1), then there is a unique interpolation operator
Sr_I(f,X)ES1,r_l such that

Sr-1U; i) = f(j) ViE Z and

Our main results are as follows.

THEOREM 1. Let 1 < q ~ p < CIJ, r E Z +. Then

dn( W;,q' L q) = E( W~q' Sn.r _ I' Lq)

= sup Ilf(-)-sn.r,(f,·)llq=n-r~(r,p,q), (1.10)
IE W;;

where sn,r-l (f, x) =: sr-l(f(-/n), nx), 2(r, p, q) =: IltP l ( . )11 Lq[O.I] = 2').(r, p, q)
and n E Z +. For (J ~ 1, the strong asymptotic result

(1.11)

holds.

Remark 1.1. For some special cases, (1.10) was solved in [12J
(p=qE{I,2,CIJ}), [IOJ (l~q~p=CIJ, l=q~p~CIJ), and [3,13J
(1 ~ q = p ~ CJJ), respectively.

In Sections 2 and 3, we give the upper and lower estimates for
dn ( W~q' L q ), 1 ~ q ~ p ~ CIJ, respectively. In Section 3, we also obtain a
result analogous to Theorem 1 on infinite dimensional widths [8 J of W~q
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in Lq. In Section 4 we consider optimal interpolation of W~q in L q.
Finally, in Section 5, we consider the dual case and obtain the following
results:

THEOREM 2. Let 1< q ~ p < 00, r E Z +' n E Z +. Then

= sup Ilf(·)-S",r-l(f, .)lI qp
(E u'~

= n-rX(r, q', p') = n -r}:(r, p, q).

From Theorems 1 and 2, we have

THEOREM 3. Let 1 < q ~ p < 00, n E Z +. Then

d,,(W~q' Lq)=d,,(W~,p" Lp)=d,,(W~, L qp )

= d,,( W~" Lp'q') = sup IIf(') -5'".r_ I(f, . )ll q

IE W;q

= sup Ilf(,)-s".r_l(f,·)llqp=n-rX(r,p,q).
IE W;

LEMMA 2.1 (cf. [4, 14, 15]). Let Lr(x) E S I,r _ 1 be the cardinal spline
satisfving L r(v)=6 0", where 60,,=0 for any VEZ\{O} and 600 = 1, and
Lr(x) = G(e - flolxl), Ixi --+ 00, for some /30> O. Then, for any f E W~q' the
cardinal spline interpolation formula with remainder

('ixER)

holds. Here Kr(x, t) possesses the follOlving properties:

(I) Kr(x, t)= (I/(r- 1)!)(x- t)'+' J - LVE Z (v - t)~-l Lr(x- v»;

(2) Kr(x+ 1, t+ 1)=Kr(x, t) (Vx, tER);

(3) IKAx, t)1 ~Ae-flolx-rl (Vx, tER);

(4) sgn Kr(x, t) = (-1 )[r/2] sgn sin nx sgn sin n(t - 2C<r)
(r~2, Vx, tER);

(5) KrC" t) = (-I)' Kr(t - 2cx n x - 2c<,) (Vx, t E R).
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LEMMA 2.2 (cf.[6]; Jensen's inequality). If f(t)~O and JRf(t) dt= 1,
then for any get) E LX)(R), we have

f
R

f(t) Ig(t)1 dt ~ {t f(t) Ig(tW dt} l/q (1 ~ q < (0). (2.1 )

By virtue of Lemma 2.1 and by changing scale, we have

!(X)-S".r-I(f,X)=l K"r(x,t)!(r)(t)dt, (2.2)
R

where K"rlx, t) =: a- r
+ IKr(ax, at), and S".r-I(f, x) =; sr_I(f( ';a), ax), for

any positive real number a.
We prove that for any n E Z + the inequality

sup 1I!(,)-sn.r_l(f,·)llq~n-rl(r,p,q) (2.3)
IE W~q(R)

holds.
Let f E W;q(R). Then, by Lemmas 1.1 and 1.2, we have

t K"r(x, t) ct>~)( t)( ct> ,,(x» - 1 dt = 1,

Knr(x, t) ct>~)(t) (ct>,,(X»-i ~ 0,

IIf(,)-s",r-I(f, ')ll q

={fR IfRK"r(x, t)f(r)(t)dtjq dxr
q

_{f If Knr(x, t) ct>~)(t) f(r)(t) Iq q }liq
- J J, ct> () . ct>(rl(t) dt Ict>,,(x)j dx .

R R n X n

By Jensen's inequality, we get that for all x E R,

I
J Knr(x, t) ct>~l(t) ./ pr1(t) Idtjq

R ct>n(x) ct>~)(t)

~ f Knr(x, t) ct>~)(t).j f~))(t) Iq dt.
R ct>n(x) ct>n (t)

By (2.4)-(2.6) and the Fubini theorem, we have

(2.4 )

(2.5 )

(2.6)

II f(- ) - Sn. r - 1(f, . )II :

~L{I
R

Knr(x, t) lct>n(xW- 1 sgn ct>n(x) dX}

X If(r)(t WIct>~)( t )1 1- q sgn ct>~)(t) dt. (2.7)
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According to Lemma 1.1 and the definitions of 4>n(x) and 'Pn(x), we get

'P~)(t) = (-1)' A-q Gr q

-

Il
l4>n(tW- 1 sgn 4>n(t),

'Pn(t) = (~r 14>~I(t)1 p-I sgn 4>~I(t).

On the other hand, by Lemmas 2.1 and 2.2, we see that

Therefore, from (2.8) and (2.9), we have

f Knr(x, t) l4>n(x)!q-1 sgn cPn(x) dx
R

From (2.7) and (2.10), we have

Since f E W~q(R), if p = q, then

(2.8 )

(2.9)

(2.10)

(2.11 )

If p > q, let 5 = p/q, 1/5 + 1/5' = 1. By Holder's inequality we have

1t IcP~)(t)IP-qlprl(t+jWdt

~ (( 1r/J~;)(t)IIP-ql' dt) l
i'(tl

Ipr)(t + jW' dt) Ii', VjE Z.



342 GENSUN AND YONGPING

Since s' = p(p - q) -I and SbIcP~'(t)IP dt = Sb lift(r)(t)IP dt = 1, we have

(2.13 )

Therefore, by (2.13) we have

t IcP~)(t)jP-qlf(r)(t)lq dt

= L: rIcP~)(t)jP - qIf(r)(t +JW dt
jEZ 0

~ I IIpr'(·+J)111p[o,,]=lIf(r)ll;;q~1. (2.14)
jEZ

Thus, from (2.11 )-(2.14), we obtain

(
2)r _

Ilf(·)-s",r-l(f,')llq~ ~ A(r,p,q)=n-r).(r,p,q)

which is (2.3). Since dim(5".r_,I/J~(2N)n+r, it is easy to see that
dim 5",r_' ~ n. Therefore, we have

d,,(W~q,Lq)~ sup Ilf(-)-s".r_I(f,·)lIq~n-rj(r,p,q). (2.16)
lE W;q

Thus, the upper estimate for d,,( W~q' L q ) is complete.

3, PROOF OF THEOREM 1

Let

W~[a, b] = {f: f(r- I) is abs. cont. on [a, b], f(j)(a) = f(j)(b),

j = 0, 1, ..., r - 1, Ilpr)11 Lp[a,b] ~ I}.

Then W~[a, b] is the Sobolev class of functions with period b - a. Put

W~·O[a, b] = {fE W~[a, b] :f(j)(a) =0, j=O, 1, ... , r-l}, (3.1)

Fpq(M", [a, b])= {fE W~O[a, b]: E(f, M", Lq[a, b])= IIfIlLq[a,b]}, (3.2)

where M" denotes a subspace of Lq[a,b] of dimension n for nEZ+.
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LEMMA 3.1. Let n E Z + and 1 < q ~ p < ex;. If M n is a linear subspace of
Lq[O, 1J of dimension n, then

(I) sup{llfIlLq[o,[];!EFpq(Mn, [0, IJ)}~dn+'+2(W;[0,1],Lq[0,1]),

(2) dn(W~O[O, 1], Lq[O, IJ)~dn+'+2(W;[0, IJ,Lq[O, IJ),

(3) (cr. [1]) d2m(l¥~[0, IJ, Lq[O, IJ)=m'A(r, p, q) (mEZ+, 1~
q ~ p ~ +XJ),

where the quantity

dn (9Jl, X) = inf sup inf IIf - gil x,
H n fe9Jl gEHn

in which the Hn range over all linear subspaees of X of dimension at most n,
is the Kolmogorov n-width of 9Jl in X.

Proof To prove assertion (1) of Lemma 3.1 we make use of Buslaev's
method (see [1,2]). Let sn+'+1={~EW+'+2:L7:;+21~il=1}. For
~=(~1'''',~n+'+2)Esn+'+I,set to=O, tk=L;~ll~il (k=I,2, ...,n+r+2).
If tj > tj _ l' define ho(t, 0 = sgn ~k' t E (t k~ I' tk ). Otherwise, we let
ho(t, 0 = O. Put

j~(X,O=D,*ho(·,~)(X)+f3o=:f[D,(X-t)ho(t,~)dt+f3o,(3.3)
o

where Po is taken such that inC E R II D, * ho(" 0 + ell Lq[O.l] =

liD, * ho( ., 0 + Poll Lq[O.[]·
Let

(3.4 )

where hdt, 0 and fJk + I satisfy the conditions

rD,(:" - t) Ifk(X, ~W- I sgn fdx, 0 dx
o

= AL [ Ih k + [(t, ~)IP- 1 sgn hk + I(t, ~),

inf II D, * hk + [ ( ., ~) + ell Lq[O. I ]
CE R

Here Ak = Ak(r, p, q) is taken such that

640.743-8
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(3.5 )

Let Mn=span{gl, ...,gn}cLJO, 1], dim(Mn)=n, ~Esn+r+l. From
the strict convexity of LJO, 1] (l < q < rxJ), we know that fk (x, 0 has a
unique best approximation L.:;'=1 cjgj(x) by the subspace M n in Lq[O, 1].
Put

I]j(O = ci (j= 1, ... , n), I]n+j+ ,(0 =fiil(O, 0 (j= 0, ..., r - 1),

I],,+r+ I(~) = J~ ho(l, 0 dt.

It is easy to verify that 1](0 =: (1]1(0, ... , I]n+r+ ,(~») is a continuous and
odd mapping from s,,+r+1 into Rn+r+l. Then, by Borsuk's theorem
(cf. [7]), there is a point ~oEsn+r+l such that 1](~0)=0. Therefore, we
have

IIfk(', ~0)11 L.[O.1} = jnf Ir1fk(" ~o) - f G j gj(') II
,u,) i ~ I L.[O. 1]

= E(fk( " ~o), M,l' Lq[O, 1]).

Since fk(X, ~o) is a I-periodic function and

IIfr l
(., ~olll £.p[O, 11 = Ilhd·, ~0)1[ Lp[O, 1] = 1,

then fiil(O, ~o) = fiil(l, ~o) = 0, j = 0,1, ... , r - 1, and hence we have
fk(X, ~o) E W;'O[O, 1], and fk(X, ~o) E Fpq(M", [0, 1]).

Let m = [(n + r + 2)/2] + 1. Then we have

Ilfk(', ~0)11 £..[0, I] ~ min Ilfk(" ~)II L.[O.I],
(ES2m

sup{llfIlL.[o,I]:fEFpq(Mn, [0, I])} ~ min IIfk,OIIL.[o.I]'
;ES2m

By [1], we have

lim min Ilfk(', 011 L [0.1]
k ----. :x ~ E 8 2m q

(3.6)

Therefore, from (3.5) and (3.6), we obtain (1) of Lemma 3.1. Part (2) of
Lemma 3.1 follows from (1) of Lemma 3.1.

Proof of Theorem 1. For (1 > 0, let M be a subspace of LiR) of average
dimension dim M ~ (1, and B be a subspace of L q(/N), N> 0, satisfying

N" =: dim B= K(c, N, M) and
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For each IE Fpq(B, IN) and gEM, II gil q~ 2/1/1/J q' we have

III - gil L (I,) ~ inf /If - hll L II,) - inf II g- hll L 11,1
q, hEB q. hEB q.

~ I1III L.II,) - 211/11 LqIlN) E(S(M)N' B, Lq(lN))

~ (1 - 2£ ) /I I II LqIlN) = (1 - 2£ ) 11 Il/vll Lql R I . ( 3.7 )

Therefore, for each IE Fpi B, IN)' we have

(3.8)

It is easy to verify that for any IEW~O(IiV)' 11/"E(2N)lq-I/PW~q'

1~ q ~ p ~XJ. Then, from (3.8) we get

E( W~q' M, Lq)

~ (2N)liP
-

I/
q
E( W~°(lN)' Mil" Lq(lN»

~(2N)1/P-I/qE(FpiB,IN), Mil" Lq(lN»

~ (1 - 2£ )(2N)'/p - I/q sup{ /1/11 Lqlfvl: IE Fpq(B, IN n. (3.9)

On the other hand, by changing scale and (3) of Lemma 3.1, we have

d Nrr +r+2( W~(lN)' Lq(l,,)

=(2N)r+l/q-- 1iP d (Wr[O 1] L [0 I]). N rr + r + 2 P , , q ,

Combining (3.9), (2) of Lemma 3.1, and (3.10), we have

([
N,,+r+2 l )-r

E( W;q' M, L q)~ (I - 2e)(2N)' 2 J+ 1 A(r, p, q).

By the definition of N", we have

1· l' N"1m 1m -~(J.

r,~O N~ 2N

(3.10)

(3.11 )

Further, for any subspace M of L q of average dimension dim M ~ (J, by
(3.11) we have
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Thus, we obtain

du ( W~'I' L q ) ~ (J '~(r, p, q) (V(J > 0). (3.13 )

Hence, (1.10) follows (2.16) and (3.13) for (J=nEZ+.
If (J> I, I < q ~ p <YJ, then we may choose an integer m such that

m < (J < m + 1. Further, we have

Hence, by (1.10) and (3.13), (1.11) is immediately obtained. The proof of
Theorem I is complete.

In [8], Li Chun proposed the following concept of infinite dimensional
width.

Let X be a normed linear space of functions defined on R, M be a linear
subspace of X. For each (J > 0, if limN~" (2N) I dim(MI [_ N. iV)) = (J, then

we say that the dimensional index of M is (J, and denote it by 'dim' M = (J.
Let Wl be a subset of X. The quantity

;U~m, X) = inf sup inf Ilf - gil x
~A4~(f fE~m R"E.M

is called the infinite dimensional (J - K width of 9Jl in X.

LEMMA 3.2.

(U~m, X) ~ du(Wl, X).

Pro(~r: Let M be a linear subspace of X. Then for all e> 0,

(3.14 )

E(S(M)IV' MI'N' X(Iv )) = 0 < e.

If ~M~(J ((J>O), then limN~+,(2N)-ldim(Ml/vl~(J,i.e., for all
I] > 0, there is a real number N(I71 > 0 such that dim(MI,J ~ 2Nk + 1])
holds for any N> N(I]). Thus, from the definition of K(f., N, M), we know
that when N>N(I]),

K(t;, N, M) ~ dim(MI,,) ~ ((J + IJ) 2N,

Therefore we have

I
. K(e, N, M)

dim M = lim 1m ~ (J.
,,~O IV ~ 'x., 2N

VII> O.

By the definition of daf~m, X) and t/u(9Jl, X), we have (3.14).
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THEOREM 4. Let I < q ~ p < eX). Then

(I) dn(W~q,Lq)=dn(W~q,Lq)=ll-rX(r,p,q) (ifnEZ+). (3.15)

(2) d,,(W;q,L q)=0"-r2(r,p,q)+o(0"-r) (ifa~I). (3.16)

Proof From (3.13), (3.14), we have

(3.17 )

Since limN~ L (2N)-' dim(Sn,r_lI/J ~ limN~L (2N) -l(2Nll + r) ~ 11, from
(2,16) and the definition of dn(W;q, L q), we have

(3,18 )

Hence, (3.15) follows (3.17) and (3.18), Thus, by (3.13 )-( 3.15), we obtain
(3.16 ).

Remark 3,1, If 1 < p = q < W, (J > 0, by changing scale, we obtain

sup Ilf(,)-s",r-,(f,·)Il p =O" rJ.(r,p,p).
lE ~f~

Here S",r-l(f,·) is the interpolation operator of splines defined in (2.2).
Therefore in this case we obtain the exact estimations of d,,( W;" L p ) and
ciA W;, Lp ) for any real number 0" > 0,

4. OPTIMAL INTERPOLATION OF W;q IN L q •

In many recent books (cf. [18, 21, 22]), the function classes on which the
optimal recovery problems were investigated are defined on a compact set,
for example, on a bounded closed interval, on the unit circle, or on the unit
disk of the complex plane, In [16], Sun Yongsheng proposed and dis
cussed the optimal interpolation problem on some classes of differentiable
functions defined on the entire real axis. Following [16], we denote bye"
the set of sequences e = {ej LE z satisfying the conditions

ej<ej+l,VjEZ, and I
, card(en[-N,N])
1m ~ (J, (4.1)

N':-:;x 2N

where 0" > 0 is fixed and card(en [ - N, N]) is the number of e
l

contained
in [-N, N]. Given eEe", e= {ejLEZ, and fEC(R), the set 1(0=
{f(~)}jEZ is called a sample (or information) operator of f(x), For the
solution operator S = 1 (identity operator), the diameter of information
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and the minimal information diameter (cr. [22 J) on IDl c X are defined as,
respectively,

D,;.,,(IDl, X) = sup{ IIII - 121Ix:fI,/2 EIDl, [,;(fd = [((f2)}, (4.2)

D ,,(IDl, X) = ,inf D (. ,,(Wl, X). (4.3 )
i"EB(J

Here X is a normed linear space of function with norm 11·11 x' For fixed
~ E err, let ¢J: I((IDl) ---+ X be a mapping which may be taken as an algorithm
for the solution operator I (i.e., interpolation problem) on IDl in X. The
optimal intrinsic error on IDl of the solution operator I in X defined by

E,,(IDl, X) = inf inf sup III - ¢J(I,;(f)11 x.
~Ee(1 4J fe'in

(4.4 )

When the algorithms rP of (4.4) run only over the set of linear mappings
defined on a linear set Y (:::> [((IDl)), then we arrive at the optimal linear
intrinsic error which is denoted by E;(9)l, X). From [18 J, if IDl is
symmetric about its center, then

(4.5 )

LEMMA 4.1. (d. [11, 17J). Let 1<q",;;p",;;oo. Then

E( W~" Sr_ 1(0 (l Lp'q' , Lp'q)"';; sup{ 11/11'1: I E W;q,/(~) = 0, VjE Z},

where Sr I(~)= {S(t)EC- 2(R);slr)(t)=o, VtE(~j' ~j+I)' VjEZ}.

THEOREM 5. Let 1 < q",;; p < CfJ.

(l) 1D,,( W~q' Lq) = E,,( W;q' !::q) = E;,'( W;q' Lq) = sUPIE w~ 11/(·)
s",r-ICf,·)II q = d,,(W;q,Lq) = n ric(r,p,q)(ifnEZ+).

J2) O'-r).'(r, p, q) ",;; 4D,,(W;q, L q) ",;; (W;q' L q) ",;; E;;(W;q' L q) ",;;
O'-r;'(r, p, q)+o(O'- r) (ifO'~ 1).

Proof From the definition of the optimal intrinsic error and the
optimal linear error and (2.16), we have

E,,( W;q' Lq)"';; E~( W~q' Lq)

",;; sup 11/(,)-s".r_,U;·)lI q",;;n- r).(r,p,q). (4.6)
Ie w~

Let cj=Jf+'I/(t)IP' dt, VjEZ. Then by Holder's inequality, we have

(
N ) tjp' (N ) tjq'

11/11 Lp [ - N.N] = j~"IN c j ",;; j=~N cfp' (2N)I/P' - 1/'1'

= (2N)'jp' liq'II/IILpq(/N)' (4.7)
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According to Lemmas 4.1 and 3.1(2) and (4.7) and by changing scale, for
fixed (E e", we have

sup{ Ilfll q : fE W~q,J(U= 0, jE Z}

?oE(W:, Sr_l(OnLp-q-, L p_q_)

?o E( W~..°(I",), Sr-I(Ol/s' Lpq,(IN»

?o (2N)W - lip'E( W/(IN), Sr _ I (Ol/v' Lp(IN»

?o (2N)l iq' lip dN(~I+r+2( W:(IN)' Lp(IN»

= (2N)liq'- liP (2N)' + lip- liq' dN(~)+r+2( W:,[O, 1], Lp'[O, 1])

([
N(o+r+2J )--r"?o (2N)' 2 + 1 ,;,(r, q', p'),

where N( 0 =: card {( n [ - N, N] }+ r, since ~ = {~;} j E Z E e", i.e.,

I
. N(O+r+2
1m ~ a,

N_ +"C 2N

Then, from the fact that

D,,( W~q' L q)= inf sup {IIfll q : f E W~q' Id = O}
~E8rr fE W;q

(4.8 )

(see [16]), we have

D,,(W~q' L q)?oa- r2r;,(r, q', p')=a- r2rA(r, p, q)=a-r~(r, p, q). (4.9)

On the other hand, by (4.5) (when 9Jl = W~q) and Theorem 1, we have

Dn( W~q' Lq)~ En( W~q' Lq)~ E;( W~q' Lq)

~ sup Ilf-s".r_,Cf)lIq~n-r~(r,p,q). (4.10)
IE W~4

Thus, Theorem 5( 1) follows from (4.9) and (4.10) for a = n E Z +' and
Theorem 5(2) follows from (4.5), (4.9), and Theorem 5(1).

5. DUAL CASE

Proof of Theorem 2. Similar to the proof of (2.3), we may verify that

sup Ilf - sn.r-lU)ll qp ~ n-r~(r, p, q),
(E w~

(5.1 )
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(for details of the proof of (5.1) readers may refer to [11] and the proof
of (2.3)).

To get the lower estimate for dn ( W~, L qp ) in Theorem 2, we use the
following

LEMMA 5.1. Let fk(X, z) be as defined in (3.4). Set

F (x 7) _. (2N)r-l/pr (X + N 7)
k " ,.. -. J k 2N''''

Then for any subspace Be Lqp(IN) with dim B = n, there is a i E sn + r + I

such that Fd t, i) E W~·°(IN) and

(5.2)

where I <q~p< 00.

Proof It is easy to verify that (5.2) follows from Borsuk's theorem. We
omit its details.

We now prove the lower estimate for dA W~, L qp ) for any a ~ I. Let M be
a subspace of Lqp(R) of dim M ~ a. For each N ~ 1, we take a linear subspace
B of Lqp(IN) of dim B = K(e, N, M) =: N a satisfying E(S(M)n' B, Lqp(IN)) < e.

Then, by Lemma 5.1 and the inequality

we have

E( W~, M, L qp )~ E( W~·°(IN)' MIIN ' Lqp(IN))

~ inf{ IIFk( ., i) - !II Lqp,j; f EMil", Ilfll qp ~ 21IFd ., i)11 qp}

~ inf{ IlFd ., i) - gil Lqp(lN); gE B}

- 211Fk( ., i)11 qpE(S(M)N' B, Lqp(IN))

~ (I - 2e) IlFd" i)ll qp = (1- 2e)(2N)' Ilfd·, i)IILq[o.l]

~ (1- 2e)(2N)' min{ Ilfk(" z)IILq[o,I]; z E SNu+r+ I}. (5.3)

Letting k -+ 00, we have

E( W~, M, L qp )

~ (1- 2e)(2N)' min{ Ilf(·, z)IILq[o,l]; z ESNo+r+ I}

~(1-2e)(2N)'d2[(No+r+2)!2](tV~[0, 1], Lq[O, I])

( [
Na+r+2J)-r-

~ (1-2e)(2N)' 2 2 ).(r, p, q). (5.4 )
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Letting N -> oc, and e -> 0 +, we have

Thus, we have

351

(5.5)

(5.6 )

Theorem 2 follows immediately from (5.1) and (5.6) for a = n E Z +.

Analogous to Theorems 4 and 5, we have:

THEOREM 6. Let 1 < q,;;:; p < 'lJ. Then

(1) dn( W~, L qp ) = inffE ~~ Ilf(-) - Sn.r-I(f, . )ll qp

(nEZ+),

(2) d,,( W~, L qp ) = ar~(r, p, q) + o(a- r) (a?-l).

THEOREM 7. Let 1 < q,;;:; p < oc. Then

(1) 1Dn ( W~, fqp) = E n( W~, L qp ) = E;( W~, L qp ) = SUPfE w~ Ilf(·)
sn.r- ,(1, . )ll qp = n -rA(r, p, q) (n E Z+).

J2) a-rX(r, p, q) ,;;:; !D<r( W~, L qp ) ,;;:; E<r( W~, L qp ) ,;;:; E;( W~, L qp ) ,;;:;

a -rA(r, p, q)+ o(a- r) (a?-l).

Remark 5.1. If we denote

~(r, p, q) = X(r, q', pi) =: IIEIILq[O,I]' 1,;;:; q < p = oc,

where E(x) is the Euler spline of degree r with period 2 (see [14J), then
it is easy to see that Theorems 2, 6, and 7 are also valid in the cases
1= q < p,;;:; wand 1,;;:; q < P = w.
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