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In this paper, we determine the exact value of average n— K width d,( W (R),
L (R}) of Sobolev-Wiener class W/ (R) in the metric L (R) for 1 <¢< p<oc and
get the value of d,(W/(R), L,(R)) for the dual case. We also solve the optimal
interpolation problems of W7 (R) in the metric L ,(R) and W (R) in the metric

L (Ryfor I <g<p<oc. 1993 Academic Press, Inc.

1. INTRODUCTION

Let X be a normed linear space. For subsets 4 and B of X we define

E(A, B, X)=:sup inf || f—gll .

feAd geB

We denote by X(R) a normed linear space of functions defined on the
entire real axis R and assume that fe X(R) implies f], € X(R) for any
N >0, where f|, (x)= f(x) or 0 according to whether xely=:[—N, N]
or not. All functions f|,, in X(R) compose a subspace of X(R) which we
denote by X(I).

For A<« X(R), N>0, and &> 0, we define

S(A) = {flnyx): 1 flyr S 1, feA]}
and

K(g, N, A)=:min{dim B: Bc X(I), E(S(4)x, B, X(Ix)) <&},
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336 GENSUN AND YONGPING

where dim B denotes the dimension of the finite dimensional linear sub-
space B of X(I,). It is easy to see that K(e, N, A) is non-decreasing in N
and non-increasing in &.

Let ¢ be a positive real number. A linear subspace 4 of X(R) is said to
be of average dimension o if

dim 4 =: lim lim ————=0< . (1.1)

For a subset IR of X(R), the quantity
d,(M, X(R)) =: inf{ E(M, 4, X(R)):dim A<, A< X(R)}  (1.2)

is called the Kolmogorov average o-width (briefly average ¢ — K width) of
the set M in X(R). If there is a subspace 4* of X(R) of average dimension
dim A* <o such that

d, (M, X(R))= E(M, A*, X(R)), (1.3)

then A* is called optimal for d,(M, X(R)).

The concept of average width was first proposed by Tikhomirov [ 19, 20]
in order to consider problems of optimal approximation methods on a
non-compact Sobolev set W, (R). Sun Yongsheng {16] proposed problems
of optimal interpolation on W/(R). For p=g many results have been
obtained on W (R) in the metric L,(R) (see [3, 8,12, 13, 16]). It is easy to
verify that 4, (W (R), L (R))=cc for p>g, neZ, = {1,2, ..}. For
g=1<p<oo, or 1<g<<p=oc0, Liu Yongping and Sun Yongsheng
[9-11] considered the average n— K width of the set W7 (R) in L (R),
where W7 (R) (1< p, g < o0) is defined as follows:

For each reZ ., set

L (R)y=:{feL,(R): f"""isabs. cont.
on every finite interval, /'€ L, (R)}, (1.4)
W R)=:{feL, (R): || f"],, <1},

where L, (R)=: {f:]fll,, <o} and

gl ={ el 80t Mol d=a<e
P4 supje 2 llg( '+j)“L,,[0,l]1 q= 0,
while |-l denotes the usual L,-norm on the interval I, and

Z=:{0, +1, +2,..}.
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In [5], the following properties of L,,(R) were shown:

(i) L,,(R)is a Banach space with norm |-|,, for any 1< p, g < .

(i) If p>gq, then L, (RYc L (R)NnL(R); if p<g, then L, (R)>
L(RyU L, R);if p=gq, L, (R)=L,(R).

W (R} is called the Sobolev—Wiener class. When p=gq, W} (R)= W](R)

is the usual Sobolev class. For convenience, we often write W, , L, and

[ -1, instead of W, (R), L, (R), and {l-|,,, respectively.
In the following, we always assume
+ 1 1 + L 1 (1< < oo)
- —7= y - ——,= ~ p7 q ~
pp g9 4

The main purpose of this paper is to determine the exact value of
average n— K width d (W rer L,) of Sobolev-Wiener class W, in the
metric L, for | <g< p<o0. For the dual case we determine the value of
a_’,,(WI’,, Lqp). We also solve the optimal interpolation problem of W7 in
the metric L,, and W in the metric L , for  <g < p < 0.

Before stating our main results, we give two lemmas as follows:

LEMMA 1.1 (cf. [1]). Let 1 <g< p<oo. Then there are two 1-periodic
Sfunctions ¢(x) and Y(x) such that
(1) ¢(x)=fo D(x~0)Y()|” " sgn ¢ (¢} di,

Y(t)=4"7 5 D(x—1) |$(x)|? " sgn ¢(x) dx
(; = )~(rs b, ‘I)),

(2) @(x) has only two simple zeros 0 and } in [0, 1), Y(x) has
only two simple zeros a, and }+ a,, where

a, =g (1+(—1)""); (1.6)

(3) dlx+3)=—g(x), ¥(x+3) = —d(x);

(4) “¢“Lq[0,l] = A(r, p, q), and (|¢(')(‘)“L,,[0.1] =1 (L.7)
(5) 4lr,p,q)=Alr, ¢’ p'). (1.8)
Here

D.()y=22n)" " z k=" cos(2kmt — inr)

is the 1-periodic Bernoulli polynomial.
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Let

(D,,(x)=<%)r¢<gx>, ‘P,,(x)z(%)r\/,«(g.x), neZ.. (19)

Then @,(x) and ¥,(x) are two (2/n)-periodic functions which depend only
onr, n, p, and q. For neZ ., let

Sy = {S(t) eC’ %s(1)=0,

1 1
Vte(;q— (j+2<x,),;(j+ 1 +2cx,)>,VjeZ}

be the subspace of polynomial splines of degree r— 1 with simple knots
{(j+2a,)/n}, 5. Any polynomial spline s(x) of S, ,_, is called a cardinal
spline function.

LemMma 1.2 (cf. [15]). If there are two constants ¢ >0, >0 such that
[f(xX) <e(|x]P+1), then there is a unique interpolation operator
s, _(f.x)e S, ,_, such that

s, (L D=fU)VieZ and s, (£, x)|=0lx|") (x-0).

Our main results are as follows.

THEOREM 1. Let l<qg<p<aw,reZ . Then
Cin( W;;qs Lq) = E( W;qa Sn,r/ 1 Lq)

=sup |f(-) =S, (s M,=n""Ar, p.g), (1.10)
few,

where Sn.rfl(f; x) =18, I(f( '/ﬂ), nx)s :]:(r9 P CI) = ”¢]( ' )”L,,[O,l] = 2r)"(r’ P Q)
and neZ . For 6 =1, the strong asymptotic result

d (W, L)=0c""ir, p,q)+o(c ") (1.11)

Pq?
holds.

Remark 1.1. For some special cases, (1.10) was solved in [12]
(p=qge{l,2,0}), [10] (1<g<p=co0, Il=g<p<w), and [3,13]
(1 <g=p< ), respectively.

_In Sections2 and 3, we give the upper and lower estimates for
L,), 1<q<p< o, respectively. In Section 3, we also obtain a

AW s
result analogous to Theorem 1 on infinite dimensional widths [8] of W7,
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in L,. In Section4 we consider optimal interpolation of W, in L,.

Finally, in Section 5, we consider the dual case and obtain the following
results:

THEOREM 2. Let l<g<p<w,rel ,neZ_ . Then

d(W;, L,)=EW;,S,, 1, L,)
- Sup “f( ) 1r—1(f )“qp
feu”

=n""A(r, g, p')=n""Ar, p. q).

From Theorems 1 and 2, we have

THEOREM 3. Let l<g< p<w,neZ_ . Then
dW  L)=d,W,, . L)=d(W, L,)
=dn(W pq)— Sup Hf( ) Snor— l(f

fsﬂ

pq’

= sup |1 () =Su,1(fs Wgp=n""2r, p, q).

jeu"

2. AN UPPER BOUND FOR d, (W', L 4

rq’

Lemma 2.1 (cf.[4,14,15]). Let L{x)eS,,_, be the cardinal spline
satisfying L, (v)=d,,, where 8,,=0 for any veZ\{0} and dyo=1, and
L.(x)=0(e "), x| > o0, for some Bo>0. Then, for any fe W’ , the
cardinal spline interpolation formula with remainder

rq?

Sy =5, (hx)=] K(x,nfO(0)di (¥xeR)

holds. Here K (x, t) possesses the following properties:

(1) K% )= (r= D((x— 1), = ez (v — ) Lofx—v));
(2) K.(x+1,1+1)=K,(x, 1) (¥x, teR);
(3) |K,(x, 1) < Ae P~ (Vx, teR);

(4) sgn K,(x, t)=(~1)"?1 sgn sin nx sgn sin n(f — 2x,)
(r=2,Vx,teR);

(5) K,(x,t)=(—1) K,(t—2a,, x—20,) (Vx, reR).
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LemMA 2.2 (cf.[6]; Jensen’s inequality). If f(¢)=0 and ij(t) dt=1,
then for any g(t)e L (R), we have

tg
Lf(t)Ig(t)ldts{fnf(t)lg(t)l"dt} (1<g<o)  (21)

By virtue of Lemma 2.1 and by changing scale, we have

S0 = sap il fi2)= | Kol 0) SO0 d, (22)

where K,,(x, t)=:0"""'K (ox, 61), and s, ,_,(f, x)=:5,_,(f(//5), ox), for
any positive real number o.
We prove that for any ne Z , the inequality

sup [ ()= 8,01y ), <1 7A(r P, q) (23)

e W R)

holds.
Let fe W, (R). Then, by Lemmas 1.1 and 1.2, we have

[ Kl @00)(@,x) " di =1,
R

K, (x, 1) ®7(1) (@,(x)) "' 20, (24)
1FC) =81l )y

N {fk UR K, (x, 1) fO1) dt

-1l

By Jensen’s inequality, we get that for all xeR,
f K. (x, 1) (1) | f71)
R PD,(x) (1)

<J K, (x, 1) (1)
“r D,(x)

4 Vg
dx}

J K, (x, 1) (1) f(1)
g D0x) @7

dt

g lig
|®,(x)]* dx} . (25)

q
dt

q

VAU (2.6)

®,(r)

By (2.4)-(2.6) and the Fubini theorem, we have
1) = $mp (I
<[, {], Kutx 010,001 " sen @, ) x|
R R

XSOOSO sgn @) at (27
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According to Lemma 1.1 and the definitions of @,(x) and ¥,(x), we get
n\e-1
w0 =(=172 0 (3) 180 s a0,
2y , )
Y (1)= . 1@ ()]~ sgn @T(2). (2.8)
On the other hand, by Lemmas 2.1 and 2.2, we see that

Y (1)=(—1) L K, (x, 1) ¥7(x) dx. (2.9)

Therefore, from (2.8) and (2.9), we have

[ Kol 0)1@,(x)17 " sgn @,(x) ax
R

rig— 1}
~(—1) 29 <g> j K, (x, 1) ¥\(x) dx
n R

Hg—1)
= (E) A1)

n

B Gz) A4\ @Y (1) 7~ sgn BL(1). (2.10)

From (2.7) and (2.10), we have

n

)= g<(5) 2 ] e a2
Since fe W, (R), if p=gq, then
jR N ORESUO I dr=fk IO de< L. (2.12)
If p>gq, let s=p/q, 1/s+ 1/s'=1. By Holder’s inequality we have

[0« e dr

l/s

< (fl D17~ dt) <jl e+ ) dt) . Vel
] 0
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Since 5" = p(p—q) " and [} [@L(1)] dr = [} |$7(1)|” di =1, we have
[revar o peas([ e a)”. @)
Therefore, by (2.13) we have
J, 1@ 0w

= % [ 1ot o1 e e de

jeZ

S M CH Mo =15, <L (2.14)

JjeZ

Thus, from (2.11)-(2.14), we obtain

2y -
1= 50 (S (2) gy =n B g (€Z) @15)

which is (2.3). Since dim(S,, ,),,)<(2N)n+r, it is easy to see that
dim S, , |, <n. Therefore, we have

dy(Wiys L)< sup 1) =5, 1(f; ) <n7"(r, pg) (2.16)

/eW

Thus, the upper estimate for d,,( W, L,) is complete.

3. PROOF OF THEOREM 1

Let
Wrla, b]={f:f"""isabs.cont.on [a, b], fVa)=["(b),
j=0, L, ., r—1 Hf[r)“ Ly[a,b] < 1}
Then W;,[a, b] is the Sobolev class of functions with period 4 —a. Put
Wrola,bl={feW[a,b]: fP(a)=0, j=0,1,..,r—1}, (3.1)
F, M, [a b])={feW;[a, b]: E(f, M,, L,[a,b])= | fll 1 fas1}» (32)

where M, denotes a subspace of L, [a, b] of dimension n for neZ ,.
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LEMMA 3.1. LetneZ, and 1 <qg<p<occ. If M, is a linear subspace of
L,[0, 1] of dimension n, then

(1) sup{1lfll 0.1 /€ Fpo( M, [0, 11)} 2, (W3[0, 17, L, [0, 17),
(2) d,(W;°[0,1], L,[0,1])>d, ., o(W,[0,1], L,[0,1]),

(3) (cf. [1]) donl W,[0,17, L0, 11)=m "A(r, p,q) (meZ,, 1<
g<p< +w),

where the quantity

dn(iUL X) = lnf sup ]nf ”f- g” X3

Hy, fe geH,

in which the H, range over all linear subspaces of X of dimension at most n,
is the Kolmogorov n-width of M in X.

Proof. To prove assertion (1) of Lemma 3.1 we make use of Buslaev’s
method (see [1,2]). Let S"*'*'={feR"*" 230+ {¢l=1}. For

i=1
E= (8, i Epara ) ES T set 15=0, t,=3%_,1&) (k=1,2, ., n+r+2).
If 1,>1, ,, define ho(r,{)=sgné,, te(f;_y, 1) Otherwise, we let
ho(t, £)=0. Put

1
Jo(x, &)= D, % ho(+, EUX) + o =: L D (x—1) ho(1, ) dt + By, (33)

where B, is taken such that inf . g D, * ho(-, &) + ¢l fo.y =
1D, * kol -, E)+ Boll L,00,17"
Let

1
fx &)= D,(x=0) it &) e+ By, (34)

where h (1, &) and B, ., satisfy the conditions

J, DA =0 1le, €017 " s filx, €) s

=AZ+1 |hk+ l(’a 5)"77 ! Sgl’l hk+1(ta é)’

12{ 1D, * A1 (-5 &)+l pypons

=D, * hy (- é)+ﬁk+]HLq[0,]]‘
Here A, = 4,(r, p, q) is taken such that

”hk+1(" 5)”L,,[0.1] =1

640:74;3-8
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Let M,=span{g,, .., g&,}<L,[0,1], dim(M,)=n, £€S"* "' From
the strict convexity of L [0, 1] (1 <g< o), we know that f, (x, {) has a
unique best approximation ¥7_, ¢;g,(x) by the subspace M, in L [0, L].
Put

’7](6) =Cj (J= l’ (it n)’ '7"+j+l(é):.f§(/)(os 5) (J=Os wees r— 1)’

’7n+r+l(é)=L ho(l, &) dt.

It 1s easy to verify that n(&)=:(y,(£), ... ,,+,, (&) is a continuous and
odd mapping from S$"*7*! into R"*"*' Then, by Borsuk’s theorem
(cf. [7]), there is a point < eS8" "+ such that 7(&,)=0. Therefore, we
have

1 M
\fk('a Eo) — Z a; g;i(+)

i=1

Ifels €l eyror= l(nt;

= E(fk( s 50)’ Mn’ Lq[oa 1])
Since f,(x, &) is a 1-periodic function and

”f;(”(w Soll 00117 A(-, fo)“l.p(o,x] =1,

then f0, &) = f(1, &) =0, j =0,1,..,r— 1, and hence we have
.fk(x* é(])e W;O[Oa 1]! and .fk(xa gO)Equ(Mna [09 1])
Let m=[(n+r+2)2]+ 1. Then we have

L,00.1]

£ (s Eo)li L0172 mlsgn [ £l é)”l.,{[().ljz-

P Lo /€ My 0011} > min LAl oy
By [1], we have
Jim min 10 o
= min lim £ Elygonn > dan( W0, 11, L,L0, 11)
>d, ., (Wi[0,1], L,[0,1]). (3.6)

Therefore, from (3.5) and (3.6), we obtain (1) of Lemma 3.1. Part (2) of
Lemma 3.1 follows from (1) of Lemma 3.1.

Proof of Theorem 1. For g >0, let M be a subspace of L (R) of average
dimension dim M <o, and B be a subspace of L (/y), N >0, satisfying

N,=:dim B=K(z N, M) and  E(S(M)y, B, L(I,))<e.
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For each f e F, (B, 1y) and ge M, |lgll, <21 /1., we have
I~ &l > L 1f =kl g = inl g =l 1y
2 W ey = 21/ iy ECS(M) , B, L(1))
S =21/l Ly =T =260 S0l L)y (3.7)
Therefore, for each f'e F, (B, I), we have
inf{ [/ [;,—gll,: ge M} 2 (L=2e} (ST, (3.8)

It is easy to verify that for any feW.,°(y), fl,,€ QN)" 17w |
1 <g< p< . Then, from (3.8) we get

EW, .M L)

2 (2N)'"? T EWO(TY), ML,y L(1y))

> (2N T VE(F, (B, Ty), My, L(Iy))

= (1-2e)2NY7 Y sup{Ifll ync f€Fp (B Iy)). (39)
On the other hand, by changing scale and (3) of Lemma 3.1, we have

dy, v 2d W), L(Iy))
=Ny rdy L (W0, 10, 2,10, 17)

TN 2 -r
> (AN + -t ([—"—%ﬁ—}r 1) W op ). (310)

Combining (3.9), (2) of Lemma 3.1, and (3.10), we have

N 2 -r
E(W, M, L,)=>(1-2e)2N) ([——————o +2r+ ]+ 1> Alr, p,q) (3.11)
By the definition of N, we have
lim lim -A—[Z<a
e—0 N—:-'—r 2N\ '

Further, for any subspace M of L, of average dimension dim M <a, by
(3.11) we have

E(W,, M, L)>0 "2ir. p,q)=0""A(r, p. q). (3.12)

rq’
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Thus, we obtain

AW, L)yza "Ar,p.q)  (Ya>0) (3.13)

Py’

Hence, (1.10) follows (2.16) and (3.13) for c=neZ, .
Ifo>1, l<g<p<o, then we may choose an integer m such that
m<o<m++ 1. Further, we have

Jm-)»l(Wr L:/)S(ZU(W;W’ Lq)ga_'m( g Lq)

Pye g

Hence, by (1.10) and (3.13), (1.11) is immediately obtained. The proof of
Theorem 1 is complete.

In [8], Li Chun proposed the following concept of infinite dimensional
width.

Let X be a normed linear space of functions defined on R, M be a linear
subspace of X. For each 6> 0, if lim, ., (2N) 'dim(M|; . yv;)=o0, then

we say that the dimensional index of M is o, and denote it by dim M =o.
Let 9 be a subset of X. The quantity

d(M, X)= inf sup inf ||f— gl

JﬁnMsa JeMM geM

is called the infinite dimensional ¢ — K width of 9% in X.

LEMMA 3.2

d (M, X)<d (M, X). (3.14)
Proof. Let M be a linear subspace of X, Then for all >0,
E(S(M)y, M|, X(Iy))=0<e

If dm M <o (6>0), then limy . ., (2N) 'dim(M|, ) <o, ie., for all
n>0, there is a real number N(n}>0 such that dim(M|,,) <2N(c +1)

holds for any N > N(5). Thus, from the definition of K(e, N, M), we know
that when N> N(y),

K(e, N, M)<dim(M|, )< (o +1n) 2N, Yy >0.
Therefore we have

dim M =lim lim Msa.

=0 N> x 2N

By the definition of (7(,(‘).)1, X) and d,(M, X), we have (3.14).
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THEOREM 4. Let 1 <g< p<oc. Then

(1) dW,, L)=d W, L)=n"Ar,p.q) (ifneZ,) (3.15)

2) d (W, L )—a*’/.(r, p.q)+o(e™") (if 6 2 1). (3.16)
Proof. From (3.13), (3.14), we have

d(w’

pa’

L)=n""ir,p,q) (fo=neZ,). (3.17)

Since im, ., (2N)~! d)m(S,, roal ) <limy (2N)"'(2Nn+r)<n, from
(2.16) and the definition of d AW, L), we have

dW',, L)<n "Xr, p.q) (fneZ,) (3.18)

Hence, (3.15) follows (3.17) and (3.18). Thus, by (3.13)-(3.15), we obtain
(3.16).

Remark 3.1. If 1 < p=g< o, 6>0, by changing scale, we obtain

sup 17V =5q,_1(f, W,=0 "Zr, p, p).

IEPV

Here s,,_,(f, ) is the interpolation operator of splines defined in (2.2).
Therefore in this case we obtain the exact estimations of d,(W’, L,) and
d,(W', L,) for any real number o >0.

4. OPTIMAL INTERPOLATION OF W, IN L.

In many recent books (cf. [18, 21, 227), the function classes on which the
optimal recovery problems were investigated are defined on a compact set,
for example, on a bounded closed interval, on the unit circle, or on the unit
disk of the complex plane. In [16], Sun Yongsheng proposed and dis-
cussed the optimal interpolation problem on some classes of differentiable
functions defined on the entire real axis. Following [16], we denote by @
the set of sequences ¢ = {&,},. , satisfying the conditions

. ard(EN[—N, N
<&, Vel and lim card(c 0 [ ])< ,
' N - +x 2N

(4.1)
where ¢ >0 is fixed and card(¢ n [ - ¥, N]) is the number of ¢, contained
in [—N,N]. Given {€0,, {={{},.z, and feC(R), the set I({)=
{f(£)},cz is called a sample (or information) operator of f(x). For the
solution operator S=17 (identity operator), the diameter of information
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and the minimal information diameter (cf. [22]) on IR < X are defined as,
respectively,

D: (M, X)=sup{llfy = Lfollx: f1. e I f1)=1(f»)},  (42)
D,(M, X)= inf D, (M, X) (4.3)

Here X is a normed linear space of function with norm | .|| y. For fixed
e @,, let ¢: I.(M) — X be a mapping which may be taken as an algorithm
for the solution operator I (i.e., interpolation problem) on It in X. The
optimal intrinsic error on M of the solution operator / in X defined by

E (M, X) = inf inf sup |/ — (7))l x- (4.4)

{e@, ¢ feWi

When the aigorithms ¢ of (4.4) run only over the set of linear mappings
defined on a linear set Y (> 1,(M)), then we arrive at the optimal linear
intrinsic error which is denoted by EX(9, X). From [18], if M is
symmetric about its center, then

ID (M, X)< EL (M, X)< EHM, X). (4.5)
LemMa 4.1, (cf. [11,17]). Let 1<g< p< . Then

EW,, S, (&) Ly, Ly, ) <suplllfll,: fe Wh,, f(£)=0,¥j€eZ},
where S, (&)= {s(1)e C""R); s(1)=0, V1€ (&, &, 1), VieZ).

THEOREM 5. Let 1 <g< p<ow.
(1) 3D, Eq,L)—E(Wp,,,L)-E’(qu,L)—Supfew 1) -

S~ l(f )’ d(qu9L) n r't(r P»CI) lfnGZ )

(2) o AUrpa) < DWW, L) < (W), L) < EXW,,, L) <
o "A(r, p,q)+o(a™") (lfa> 1).

Proof. From the definition of the optimal intrinsic error and the
optimal linear error and (2.16), we have

E(W, L)SEXW, L,

< sup |fC)=sp, ol N, <nA(r, pg). (46)

Fewy,
Let ¢,=(/*"|f(1)]” dt, ¥je Z. Then by Holder’s inequality, we have

N Up' N N o
I ll,s-ny= < Y C;) < ( > c! " ) (2N)!P -l
N

j= - j=—N

=N f (4.7)
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According to Lemmas 4.1 and 3.1(2) and (4.7) and by changing scale, for
fixed € ®,, we have

sup{llfl,: feW,,, f({)=0,jeZ}
>EW.,S, (&L, L,,)
= E(W10) S, - 1(E) 1 Ly (Iy))
= 2NYCTIEW L), S, (D) LpATx))
2 QN dyey oW U ) Ly (Ty)
= QN)T Ny (W10, 1], L, [0, 1])

> 2Ny ([N—(g—)—;—’f—z] + 1>, A ds P, (438)

where N(&)=:card{{n[—N,N]} +r since = {¢},.,€0,, ie,

i N(y+r+2
N o 2N

SO’,

Then, from the fact that

D (W, L,)=inf sup {|fll,: feW], I./=0}

£e®, feW,,
(see [16]), we have

D (W,  L)yzo "2ir,q,p)=0"2A(r, p.q)=0" /(r, p,q) (4.9)

Pq°
On the other hand, by (4.5) (when MM = W) and Theorem 1, we have
D, (W, L)SEW,, L)SE (W, L,
\ Sup “f nrfl f)}l r r P’ q) (410)

feu'

P‘l’

Thus, Theorem 5(1) follows from (4.9) and (4.10) for 6=neZ_., and
Theorem 5(2) follows from (4.5), (4.9), and Theorem 5(1).

5. DUAL CASE

Proof of Theorem 2. Similar to the proof of (2.3), we may verify that

sup Il = su, (/M <n7Ar.pq),  neZ, (5.1)

[ew
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(for details of the proof of (5.1) readers may refer to [11] and the proof
of (2.3)).

To get the lower estimate for d_,,(W;, L,,) in Theorem 2, we use the
following

LEMMA 5.1. Let f.(x, z) be as defined in (3.4). Set

/X+N
Fk(x,z)=:(2N)""’fk<Y+ ) xely WN=1,keZ..

2N °°

Then for any subspace B< L, (Iy) with dim B=n, there is a e S"*"*!
such that Fi(1, 2)e W;°(1y) and

E(Fi (- 2), B, Ly(In) = | Fi(s D 1yiam (52)

where 1 <g< p<co.

Proof. 1t is easy to verify that (5.2) follows from Borsuk’s theorem. We
omit its details.

We now prove the lower estimate for d,( W, L,)forany g > 1. Let M be
a subspace of L_,(R)of dim M < 6. For each N > 1, we take a linear subspace
BofL,(Iy)ofdim B=K(e, N, M)=: N, satisfying E(S(M),,, B, L (1)) <e.
Then, by Lemma 5.1 and the inequality
L D i = CNY 1fil s D) 10105
we have
E( W;, Ms Lqp) 2 E( W:;O(IN)’ MI Iy Lqp(IN))
ZIinf{I|Fe(+, 2) = fll Lyprnrs S € Mg, 1f 14 S2NFR(-, 2}
>inf{ NEu(-, 2)— gHL,”,(IN); gEB}
-2 ”Fk( ] f)rlqu(S(M)N’ B’ Lqp(IN))
2 (1 =2&) | Fil-, 2)llgp = (1 = 26)2NY | fu (-5 D)l £y0.17
2 (1 —2¢)(2N)" min{|| fi(-, )] 100,115 Z € She+red Looo(583)
Letting k£ — o0, we have
EW,, M, L,)
= (1=2e)2N) min{| f(-, 2)ll L,ro.17: 2€ S¥ 771}
2 (1-2e)(2N) dyyw,,, . 21 W:,[O, 1], L,[0,1])

Nd+r+2]>"~

> (1 —2¢)2NY (2 [ 5 i(r, p, 9). (5.4)
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Letting N — oc, and ¢ > 0", we have

E(W,,M,L,)>0""X(r, p,q). (5.5)
Thus, we have
d,(W', L,)>a""Ar, p, q). (5.6)

Theorem 2 follows immediately from (5.1) and (5.6) for o=neZ_.
Analogous to Theorems 4 and 5, we have:

THEOREM 6. Let 1 <g< p<oo. Then

(1) 311( W,r;’ Lqp) = inffe W; Hf() - Sn,rwl(f; ')”qp = n—rz(r, pPs q)
(nEZ+)’

(2) d (W, L,)=06"A(r, p.g)+0(c™") (c=1).

THEOREM 7. Let 1 <g< p< 0. Then

(1) 3D, Wi Ly) =E(W,,L,) = EW,, L,)= supewr [1/(-) —
Spe s Ngp=n""Mr, p,q) (neZ,)
(2) o7 Xr,p.q) < 3$D(W;.L,) < E(W,,L,) < EXW,,L,) <
o "Alr.p,g)tolc”") (a=1)

Remark 5.1. If we denote

i pq)=2%r,q, p)=:El 01y 1<q<p=o0,

where E(x) is the Euler spline of degree r with period 2 (see [14]), then
it is easy to see that Theorems 2, 6, and 7 are also valid in the cases
l=g<p<owand 1<g< p=c0.
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